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Introduction 

Burns are still a frequent trauma worldwide. According 
to the American Burn Association statistics, between 2006-
2015, 205.033 individuals have suffered from burn trauma 
and 3.3% of them lost their lives (1,2). Since the mid-20th 

century, owing to numerous experimental or clinical studies, 
treatment modalities have been improved. However, due 
to ethics and standardization problems in clinical studies, 
experimental studies have been mostly preferred for 
physiopathology and healing procedures (3-9). Therefore, 
various scalding and contact burn models have been defined 
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(3,10-14). However, infeasible real-time contact temperatures 
and applied weight force (WF) measurements were the 
weak points of these models (3,14). For this reason, in 2016 
we designed a standardized contact burn model in which 
the real-time contact temperature and pressure could be 
controlled (15). A standardized second degree burn can 
be achieved in rats using custom designed apparatus (15). 
However, although the created wounds were second degree, 
the burn percentages were significantly different from each 
other. Moreover, an experimental model on human skin (HS) 
that defines the degree of burn has not been put forward 
before. With this goal in mind, this study aims to answer the 
following questions;

- What will be the degree of burn depth under the 
standardized experimental burn model? 

- What are the responses and nuances of rat and HS in a 
standardized burn model?

Materials and Methods

This study has been conducted following approval by the 
human Ethics Committee (approval number: 20/02/2017-
80558721/71) of Eskişehir Osmangazi University. HSs, which 
were assessed as waste material, were obtained from the 
discarded tissue of patients undergoing abdominoplasty. 
Before surgery informed consent was obtained from all 
individuals. Following excision in the operating theatre, skins 
were wrapped in the fresh frozen plasma (FFP) soaked gauze; 
transported in a vacuum bottle at +4 °C and kept at +4 °C 
until the end of procedure. All experimental steps (burns and 
biopsy) were performed on the same day (0 day following 
excision). Custom designed apparatus was used for the ex vivo 
HS model (Figure 1). Three temperature groups (60, 80 and 
100 °C) and two WF groups were designed, while the elapsed 
time was set at 10 sec. in all groups. The burns were created 
using two levels of pressure upon the skin sample, with light 
contact being applied for the first group, defined as the Lowe 
WF group (LWFG), and 1.000 gr of WF being applied for the 
second group, defined as the (HWFG). However, real time WF 
force was measured in all burns due to a spring-loaded design 
of apparatus. Healthy normal skins of all individuals were 
used for a control group to measure dermis and epidermis 
thicknesses (Figure 2). 

Group 0. Healthy HS (control) 
Group 1. 60 °C LWFG (G60LWFG)
Group 2. 60 °C HWFG (G60HWFG)
Group 3. 80 °C LWFG (G80LWFG)
Group 4. 80 °C HWFG (G80HWFG)
Group 5. 100 °C LWFG (G100LWFG)
Group 6. 100 °C HWFG (G100HWFG)
In the laboratory, the excised skin samples were cut into 

strips of 10x5 cm in length and width, and also defatted under 
the dermal component. These standardized tissue pieces 

were fixed onto a flat platform to get a perpendicular angle 
between the burning bar and skin for accurate measuring 
of WF (Figure 1) with an electronic scale. A 10 mm diameter 
cylindrical burning bar (that has 0.78 cm2 surface area) was 
used and at least 7 burns were created in all groups (Figure 3). 
One hour after the procedure, the burns were totally excised 
and specimens were fixed with formaldehyde. 

Statistical Analysis

Slices were stained with hematoxylin eosin and examined 
by a blinded anatomist under light microcopy (Nikon) (Figure 
4). Photographs of the burns were taken. Skin thicknesses 
(dermis, epidermis) and burn depths were measured from 
three different lines (Figure 4). Mean values and burn ratios 
(burned/healthy skin) were calculated for each wound using 
the Microsoft Excel program. Graphpad Prism 7 software was 
used for statistical analysis. The normality distribution of the 
data was assessed by the Shapiro-Wilk test. Groups were 
compared using a Two-Way ANOVA test with a post hoc test 
of Tukey’s multiple comparisons. P values less than 0.05 were 
considered as statistically significant. 
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Table I. Percentages of burn depth in all groups

Groups (°) Burn depth (%)

60 LWFG 10.5±0.7

60 HWFG 25.8±2.4

80 LWFG 52.9±2.6

80 HWFG 71.1±2.1

100 LWFG 66.7±2.1

100 HWFG 92.0±2.7

LWFG: Low weight force group, HWFG: High weight force group

Figure 1. Custom designed apparatus 
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Results

The discarded healthy skin of 4 patients were used. No 
difference was detected in the ex vivo healthy HS (dermis and 
epidermis) thickness of the patients (p>0.05). A mean of  

0.21 kg/cm2 WF was applied in the LWFG and 0.88 kg/cm2 in 
HWFG. In addition, neither in the LWFG nor in the HWFG was 
any difference detected (p>0.05). The percentage of burns 
is given in Table I. Comparing the G80HWFG vs G100LWFG 
groups, highly significant different depth of burns was noted 
between them (p<0.001). Furthermore, on ex vivo HS, in case 
of LWF force at 60 °C, first degree burns could be created; 
superficial second-degree burns could be achieved if HWF is 
applied at the same temperature. Borderline superficial/deep 
second-degree burns were detected in the G80LWFG. Deep 
second-degree burns were confirmed in both the G80HWFG 
and G100LWFG groups. Third degree burns were ascertained 
in the G100HWFG group (Figure 3, 4).

Discussion

Burns are the most frequent trauma with an incidence 
of 1.1/100.000 worldwide (2). According to trauma statistics, 
burns are the underlying reason for approximately 5% of 
the patients who lose their lives due to trauma worldwide 
(1,2). Therefore, studies concerning burns have been going 
on to evaluate prevention, physiopathology and treatment 
modalities. Cetin et al. (16) compared the survival of ex vivo 
HS in FFP soaked gauze and saline. And found that HS lives 
on in FFP for approximately thirty days. Therefore, all study 
procedures were performed in day 0 following excision as it 
is believed that results of the study would best simulate a 
living HS contact burn wound. Thus has not been reported on 
previously. Consequently, ex vivo HS and a custom designed 
standardized contact burn model have been used to depict 
the depth of burn on HS in a controlled manner. It was hoped 
that this study could provide a basis for a new experimental 
model on HS. What’s more, this study could be helpful in 
understanding the correlation between temperature and WF 
on HS. 

Herein, this study has shown that different statistically 
significant depths of burn, from 10.5% to 92% under a strict 
control of variables (time, temperature and WF), on ex vivo 
HS. In comparison to the animal model, more superficial burn 
depths have been noted on ex vivo HS, although there was 
no difference between the steps of experimental model (15). 
And it was realized that for Groups 1 and 6, variable depths 
of second degree burns were created as in the animal model. 
Moreover, they all have significantly different percentages of 
burn wounds from each other such as superficial, borderline 
deep/superficial and deep second degree. This might be 
due to different skin thicknesses or might suggest that HS 
is much more resistant than the skin of the rat. Finally, we 
believe that such different percentages of burns might cause 
variable inflammatory responses and that might affect the 
healing capacity as well. Hence, this might play an important 
role in inflammatory and/or healing procedures that should 
be evaluated. 

Figure 2. Skin material and histological measurements (scale=500 µm)

Figure 3. Macroscopic photographs of burns a) 60 °C, low weight force 
group, b) 60 °C, high weight force group, c) 80 °C, low weight force group, 
d) 80 °C, high weight force group, e) 100 °C, low weight force group, f) 100 
°C, high weight force group

Figure 4. Representative hematoxylin&eosin stained sections of groups. 
Histological appearance of a) 60 °C low weight force group, b) 80 °C low 
weight force group, c) 100  °C low weight force group, d) 60 °C high weight 
force group, e) 80 °C high weight force group, f) 100  °C high weight force 
group, scale bar shows 100 microns
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Study Limitations

The ex vivo nature of the study-that is without a blood 
supply-is its limitation. Although the skin is alive, it is 
impossible to account for immune reactions and put forward 
treatment studies. This model could be extended to become 
the basis for cell culture studies.

Conclusion

Due to custom designed apparatus, standard depth of 
burn on ex vivo HS could be investigated. The percentage 
of burn depth changes according to accurately controlled 
variables (time, WF and temperature) during the contact 
burn ex vivo HS has been presented. As a result, variables 
should be strictly under control. Especially for experimental 
healing models, for standardization of burns, percentage of 
burns might be a better indicator for classification. 
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